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Q1. Let f u iv= +  be analytic function on the unit disc { :| | 1}. D z c z=    

Show that 
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Solution:  
Given that the function 

( ) 4( , ) ( , )f z x y iv x y= +  is analytic in a domain 
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Since the analytic function has derivatives of all orders 

( )

2

2

(1) ( ) ( )

 ...(iii) 

f z f z
x

f

x x

f

x

 
 =



  
=  
  


=


 

( )

2

2
)

(

( .

)

..(iv

2) ( ) (

1)

f z i f z
y

f
i i

y y

f

y

 
 = −



  
= − − 

  


= −



 

for (iii) & (iv) we have, 
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Which is valid for any analytic function ( )f z   

i.e. If ( ) 4( , ) ( , )f z x y iv x y= +  is an analytic in a domain D  then from v ) 
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Q2. Determine all entire functions ( )f z  such that 0 is a removable singularity of (1/ 2)f  ? 

[10 Marks] 
Solution:  
As the function ( )f z  has no singularity in the finite part of the plane; it can be expanded in 

Taylor's series in any circle | |z k= ; where k  is arbitrary large. 
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Also, if ( )f z  has no -singularity at z =  ; (1/ 2)f  has none at 0z = . 

Moreover; since ( )f z  has no singularity in finite part of plane, we have, 
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Since, (2)f  has a pole of order ' n ' at infinity (1/ 2)f  has a pole of order n  at zero. 
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Where, ( )z  is a regular function of z . 

Hence, 
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 is a removable singularity of degree r . 

 
 
Q3. Using Contour integral method, prove that 
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[15 Marks] 
Solution: 
Let 
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where C  is the contour consisting of a large semicircle, T  of orders R  containing all the 
poles of the integrand in the upper half plane and the part of real axis from R−  to R . 
By Cauchy-Residue Theorem: 
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z ai=   are simple poles of ( )f z .  

The pole, z ai=  lies inside, C . Residue at z ai=  is 
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from (1) 
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Equating real parts on both sides, 
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Differentiating both sides w.r.t. m   
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Q4. For a function :f →  and 1n  , let nf  denote the th n  derivative of f  and (0) .f f=  

Let f  be an entire function such that for some 1, (1/ ) 0nn f k =  for all 1,2,3,k = . show 

that f  is a polynomial. 

[15 Marks] 
Solution: 
Since ( )f z  is entire, ( )f z  is analytic.  

Hence, ( )f z  can be expressed as Taylor’s series around 0z =  as 
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which is a polynomial function. 
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