UPSC Mathematics Optional

Previous Year Question Solutions

COMPLEX ANALYSIS

2017

Q1. Let $f = u + iv$ be analytic function on the unit disc $D = \{z \in c : |z| < 1\}$.

Show that 2 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\frac{y}{2} + \frac{\partial}{\partial} \frac{y}{2} = 0 = \frac{\partial}{\partial} \frac{y}{2} + \frac{\partial}{\partial} \frac{y}{2}$ *^x y ^x y* $\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} = 0 = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$ at all points of D

[15 Marks]

Solution:

Given that the function $f(z) = 4(x, y) + iv(x, y)$ is analytic in a domain

$$
\therefore f'(z) = \frac{\partial f}{\partial x}
$$
...(i)
or $f'(z) = -i \frac{\partial f}{\partial y}$...(ii)

Since the analytic function has derivatives of all orders

$$
(1) = f''(z) = \frac{\partial}{\partial x} (f'(z))
$$

\n
$$
= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right)
$$

\n
$$
= \frac{\partial^2 f}{\partial x^2}
$$
...(iii)
\n
$$
(2) = f''(z) = -i \frac{\partial}{\partial y} (f'(z))
$$

\n
$$
= -i \frac{\partial}{\partial y} \left(-i \frac{\partial f}{\partial y}\right)
$$

\n
$$
= (-1) \frac{\partial^2 f}{\partial y^2}
$$
...(iv)

for (iii) & (iv) we have,

$$
\frac{\partial^2 f}{\partial x^2} = -\frac{\partial^2 f}{\partial y^2}
$$

\n
$$
\Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0
$$

\n
$$
\Rightarrow \nabla^2 f = 0
$$
(v)

Which is valid for any analytic function $f(z)$

i.e. If $f(z) = 4(x, y) + iv(x, y)$ is an analytic in a domain D then from v) $\nabla^2 f = 0$

$$
\Rightarrow \nabla^2 (u + iv) = 0
$$

\n
$$
\Rightarrow \nabla^2 u + i \nabla^2 v = 0
$$

\n
$$
\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0; \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0
$$

Q2. Determine all entire functions $f(z)$ such that 0 is a removable singularity of $f(1/2)$? **[10 Marks]**

Solution:

As the function $f(z)$ has no singularity in the finite part of the plane; it can be expanded in Taylor's series in any circle $|z|$ \neq k ; where $\,k\,$ is arbitrary large.

$$
\therefore f(z) = \sum_{r=0}^{\infty} A_r z^r
$$

Also, if $f(z)$ has no -singularity at $z = \infty$; $f(1/2)$ has none at $z = 0$. Moreover; since $f(z)$ has no singularity in finite part of plane, we have,

$$
f(z) = \sum_{r=0}^{\infty} A_r z^r, \qquad f(1/z) = \sum_{r=0}^{\infty} A_r z^{-r}
$$

Since, $f(2)$ has a pole of order 'n' at infinity $f(1/2)$ has a pole of order n at zero.

$$
\therefore f(1/z) = \sum_{s=1}^{n} \frac{B_s}{z^s} + \phi(z)
$$

Where, $\phi(z)$ is a regular function of z.

Hence,
$$
\phi(z) + \sum_{s=1}^{n} \frac{B_s}{z^s} = \sum_{r=0}^{\infty} A_r z^{-r}
$$

$$
\therefore \phi(z) = A_0 = a \text{ constant.}
$$

and
$$
A_{n+1} = A_{n+2} = \dots = 0
$$

$$
f(1/z) = \sum_{r=0}^{\infty} A_n z^{-r} = a_0 + \frac{a_1}{z} + \frac{a_2}{z^2} + \dots
$$

$$
f\left(\frac{1}{2}\right) \text{ is a removable singularity of degree } r.
$$

Q3. Using Contour integral method, prove that

$$
\int_0^\infty \frac{x \sin mx}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma}
$$

[15 Marks]

Solution:

Let

$$
I = \int_C \frac{e^{imz}}{a^2 + z^2} dz = \int_C f(z) dx,
$$

where C is the contour consisting of a large semicircle, T of orders R containing all the poles of the integrand in the upper half plane and the part of real axis from −*^R* to *R* . By Cauchy-Residue Theorem:

$$
\int_C f(z)dz = \int_{-R}^R \frac{e^{imx}}{a^2 + x^2} dx + \int_T \frac{e^{imz}}{a^2 + z^2} dz
$$

= $2\pi i$ (Sum of Residues)

Since,
$$
\lim_{z \to \infty} \frac{1}{(z^2 + a^2)} = 0
$$
, therefore

$$
\lim_{R \to \infty} \int_{T}^{R} \int_{-\infty}^{e^{imx}} dx = 2\pi i
$$
 (Sure of Residues)
or
$$
\int_{-\infty}^{\infty} \frac{e^{imx}}{a^2 + x^2} dx = 2\pi i
$$
 (Sume of Residues)

…(1)

 $z = \pm ai$ are simple poles of $f(z)$.

The pole, $z = ai$ lies inside, C. Residue at $z = ai$ is

$$
\lim_{z \to ai} (z - ai) f(z) = \lim_{z \to ai} \frac{(z - ai)e^{imz}}{a^2 + z^2}
$$

$$
= \lim_{z \to ai} \frac{e^{imz}}{z + ai} = \frac{e^{-ma}}{2ia}
$$

from (1)

$$
\int_{-\infty}^{\infty} \frac{e^{imx}}{x^2 + a^2} dx = 2\pi i \left(\frac{e^{-ma}}{2ia} \right) = \frac{\pi}{a} e^{-ma}
$$

Equating real parts on both sides,

$$
\int_{-\infty}^{\infty} \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi}{a} e^{-ma}
$$

or
$$
\int_{0}^{\infty} \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi}{2a} e^{-ma}
$$

Differentiating both sides w.r.t. *m*

$$
\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx = \frac{\pi}{2} e^{-ma}.
$$

Q4. For a function $f: \Phi \to C$ and $n \ge 1$, let f^n denote the n^{th} derivative of f and $f^{(0)} = f$. Let f be an entire function such that for some $n \ge 1$, $f^{(n)}(1/k) = 0$ for all $k = 1, 2, 3, ...$ show that f is a polynomial.

Solution:

[15 Marks]

Since $f(z)$ is entire, $\therefore f(z)$ is analytic. Hence, $f(z)$ can be expressed as Taylor's series around $z=0$ as

$$
f(z) = \sum_{m=1}^{\infty} a_{-m} \frac{1}{z^m} + \sum_{m=0}^{\infty} a_m z^m
$$

$$
f^{(n)}(z) = \sum_{m=1}^{\infty} (-1)^n (m)(m+1)...(m+1(n-1))a_{-m} \cdot \frac{1}{z^{m+n}} + \sum_{m=n}^{\infty} m(m-1)...(m-(n-1))a_m \cdot z^{m-n}
$$

Now,

$$
f^{n}\left(\frac{1}{k}\right) = \sum_{m=1}^{\infty} (-1)^{m} (m)(m+1)\cdots(m+(n-1))a_{-m} \cdot k^{m+n} + \sum_{m=n}^{\infty} m(m-1)\dots(m-n+1)a_{m}\left(\frac{1}{k}\right)^{m-n}
$$

\nAs, $f^{n}\left(\frac{1}{k}\right) \to 0$ for all $k = 1, 2, 3, ...$
\nLet us take $k \to \infty$
\nWe get $a_{-n} \to 0$ and $a_{n} = 0$
\nSimilarly, if we take $m+1, a_{n+1} = 0$
\n $\therefore a_{n} = a_{n+1} = a_{n+2} = ... = 0$
\n $\therefore f(z) = a_{0} + a_{1}z + a_{2}z^{2} + ... + a_{n-1}z^{n-1}$
\nwhich is a polynomial function.
